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 Bug localization is one of the hardest, most costly, and most time-consuming 

tasks that faces software developers. Therefore, many Information Retrieval 

based Bug Localization (IRBL) approaches have been proposed to reduce the 

time and effort spent in localizing bugs. However, the quality of the queries 

positively affects the performance of the bug localization. ManQ is a multi-

objective optimization based IRBL approach that seeks to improve query 

quality. It studied a set of IRBL approaches and converted them to a group of 

15 objective functions. However, some researchers claimed there are a set of 

attributes that make a query high quality much less than ManQ’s objective 

functions. Therefore, this study aims to adapt the ManQ approach by reducing 

the objective functions and keeping only the objective functions that 

correspond to these attributes. The adapted approach is named R-ManQ. The 

results show that both R-ManQ and ManQ have similar performances, but R-

ManQ is much faster in terms of execution time and has a smaller number of 

query terms. 
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  الخلاصة 

تم اقتراح العديد من مناهج    لذلك،   .مطوري البرامج  واجهتتعد توطين الأخطاء من أصعب المهام وأكثرها تكلفة واستهلاكًا للوقت التي      

الأخطاء المعلومات توطين  استرداد  إلى  الأخطاء.IRBL) المستندة  توطين  في  المبذولين  والجهد  الوقت  لتقليل  جودة    ذلك،ومع    (  تؤثر 

متعدد الأهداف قائم على التحسين والذي سعى إلى تحسين جودة    IRBLهو منهج    ManQالاستعلامات بشكل إيجابي على أداء توطين الخطأ.  

ادعى بعض الباحثين أن هناك    ذلك، وظيفة موضوعية. ومع    15وحولتها إلى مجموعة من    IRBLدرس مجموعة من مناهج  فقد  الاستعلام.  

تهدف هذه الدراسة إلى تكييف    لذلك، الموضوعية.    ManQجودة عالية أقل بكثير من وظائف  ذا    ة من السمات التي تجعل الاستعلاممجموع

 يلمعدل سمطريق تقليل الوظائف الموضوعية والحفاظ فقط على الوظائف الموضوعية التي تتوافق مع هذه السمات. النهج اعن    ManQنهج  

R-ManQ  تظهر النتائج أن كلا من .R-ManQ  وManQ  لكن    الأداء،في    متشابهانR-ManQ   أقل بكثير من حيث وقت التنفيذ وعدد

 مصطلحات الاستعلام. 

 

 

1. INTRODUCTION) 

All software goes through the testing and maintenance phases within the development life cycle in 

order to ensure that it is free from problems and errors. Despite this, many errors and issues appear, which are 

reported to the development teams during these phases. Those bugs are defined as an existing unexpected 

behavior or unexpected performance of a predefined functionality in the source code of the software [1, 2]. 

Those bugs are written by the end users in a text file in a natural language and then delivered to the development 

team in order to use it to understand the nature of those bugs and the reasons for their occurrence. This file is 

called a bug report [1, 3-5]. Therefore, a bug report is defined as a document created by end-users that describes 

this unexpected behavior and errors in the performance of the program when they use it and what the steps that 

lead to that behavior. A bug report contains several sections, including the bug ID, summary, and description 

[6].  

According to [1, 6], these bugs go through various phases: unconfirmed, new, assigned, resolved, 

verified, closed, or reopened, as shown in Figure 1. But locating these bugs during the development phase is a 

difficult, costly, and time-consuming process [2, 3, 5, 7]. 
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In addition, according to [8], it is more costly and complex to deal with bugs after the delivery of software. 

The process of searching and exploring source code for identifying the locations of buggy files by the 

developers depends on those reports, known as bug localization [5]. The localization of these bugs can be 

considered a somewhat simpler task for developers involved in the program development process, but a 

daunting task for other developers who are not involved in the development process of this software [5, 9]. In 

addition, manual localization of these bugs is considered difficult and expensive, especially when the software 

is large and complex [7, 10]. 

 
Figure. 1 Management Process of Bug [1] 

In general, there are two approaches to localizing bugs: 1) dynamically locating bugs spectrum-based 

through program execution combined with techniques such as implementation, data monitoring, and 

breakpoints, and 2) statically locating bugs across various forms of analyses using bug reports along with the 

code, such a bug localization based on information retrieval. The first type is time-consuming and expensive, 

while the second type is preferred [11, 12].  

Therefore, to reduce the time and effort spent in localizing these bugs, a number of IRBL approaches are 

proposed. The IRBL approach mechanism can be described by using a bug report as a query and source code 

elements as a document collection in order to find similarities between them to localize the bugs. The 

documents are ranked according to their relevance to the bug report, returning a ranked list of candidate source 

files, and then the developer checks the top-N of them, one at a time, and determines whether or not they 

contain the bug [7, 12-16]. 

According to [5], , the IRBL approaches must suggest a suitable search terms automatically from the 

bug report. The baseline approach applies the IR steps without any optimization. Also, it applies a three-step 

preprocessing step to a bug report and a buggy program (camel case splitting, stop word removal, and 

stemming) in order to generate the initial query and search the document corpus to retrieve relevant documents 

[12, 14]. However, the quality of the query is more important and it determines the performance of IRBL, 

whereas many IRBL approaches cannot perform well due to their use of low-quality queries [17-19]. 

The relevant document results in High-quality queries are at the top of the list of results, whereas low-quality 

queries either retrieve the requested document at the bottom of the list of results or return no result at all. 

Therefore, using low-quality queries makes bug localization a tedious, time-consuming, and poorly performing 

process [3, 11, 16, 20].   

In addition to that, there are two strategies that produce a new, high-quality query based on a bug 

report. It involves an expansion strategy that expands the initial query with appropriate keywords and other 

reduction strategies that discard the noisy words from a bug report and focus on the important keywords only 

[20-22]. According to [11, 21] , the terms of a query selected from the bug report must be chosen carefully.  

Mills, et al. [16] show that bug reports alone contain enough keywords to form high-quality queries and, 

therefore, provide optimal performance for bug localization. Furthermore, even natural language-only bug 

reports might be a sufficient source of perfect terms for a query [11]. Rahman, et al. [11] define the optimal 

query as a query that can locate the buggy document at the top of its relevant results list.  

Mills, et al. [16]  proposed an approach called Query Quality Predictor (Q2P). It predicted the quality 

of bug report queries in concept location and traceability link recovery for Software Engineering (SE).  Q2P 

employed a set of 28 measures of query properties (21 pre-retrieval properties and 7 post-retrieval properties) 

and then a machine-learning algorithm (Random Forest) in order to define a set of rules that will identify which 

of these queries are high-quality and which are low. Q2P was an improvement over a previous approach that 

relied on using only 21 pre-retrieval properties to predict the quality of the query [20]. By using Q2P, when 

the developer writes a low-quality query, the developer can directly reformulate it without spending time 

analyzing potentially useless documents retrieved by the text-relevant engine and reformatting that low-quality 

query. 
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Kim and Lee [15] proposed a new approach called ManQ based on a multi-objective genetic algorithm 

called Non-dominated Sorting Genetic Algorithm III (NSGA-III). ManQ focused on a set of IRBL approaches 

specialized in Automated Query Reduction (AQR). It investigated finding a high-quality sub-query. ManQ 

converted those approaches into a group of objectives and combined them into one approach. It extracted 15 

objectives from them  and created 15 objective functions that include eight objectives to maintain the return 

values of Query Quality Properties (QQP) assessment metrics, four objectives to maintain the important terms 

for IRB, two objective functions to maintain initial information, i.e., cosine similarity and term-occurrence in 

the context of the sentences, and one objective to reduce the query length. ManQ introduced a better 

performance in IRBL. ManQ went through three steps. 1. calculating objective functions; 2. implementing the 

NSGA-III algorithm and initializing the final query selection; and 3. implementing bug localization. The first 

step was calculating 15 objective functions that were divided into four groups, group one of which includes 

eight objective functions (𝑓1(𝑄) − 𝑓8(𝑄)) to maintain the return values of Q2P assessment metrics. They were 

finding only the pre-retrieval property measures (coherency, similarity, term relatedness, and specificity). 

Group two included four objective functions (𝑓9(𝑄)- 𝑓12(𝑄)) to maintain the important terms for IRBL. In 

addition, group three consisted two objective functions (𝑓𝟏𝟑(𝑄)and 𝑓𝟏𝟒(𝑄)) to maintain initial information, i.e., 

cosine similarity and term-occurrence of a context of the sentence. The last group consisted of one objective 

function 𝑓15(𝑄) to reduce the query length. After completing this step, ManQ moved to the second step, which 

was implementing the NSGA-III algorithm, which resulted in multiple solutions from which ManQ chose a 

final query through the union of selective queries from each function. The last step in ManQ was implementing 

bug localization, where after obtaining the optimal query, ManQ submitted the query to a popular search engine 

for document search called Lucene in order to find the buggy files in the source code [23].  

In addition, a recently published empirical study [11] reported that the bug reports that can contain 

terms but not software information are useful and sufficient for the bug localization process and give high 

results. They compared the graph-based IRBL approaches that were used to extract the important terms with a 

number of other IRBL approaches. They concluded that the graph-based approaches were the best approach 

for extracting the important terms. In addition, the authors apply a comparison between the optimal high-quality 

queries, which achieve high results in retrieving information, and those of lower quality, and they claimed there 

are a set of attributes that make a query high-quality. These attributes are: keywords of high quality queries are 

less frequent within a bug report, are less ambiguous (i.e., have less entropy), are more likely to be found in 

the description section of a bug report, are more likely to be nouns, and the optimal candidates are likely to be 

a small number of important keywords. That study used the Genatic Algorithm (GA), which is widely used to 

solve complex optimization problems in various research domains, including SE.  

This paper depends on the ManQ approach [15] as a base work, and it seeks to evaluate the 

performance of ManQ while reducing the 15 objective functions of ManQ that meet Rahman, et al. [11] study. 

2. METHOD  

In this paper, ManQ approach is employed as a base work. This paper seeks to evaluate the 

performance of ManQ while reducing its 15 objective functions supported by Rahman, et al. [11] study and 

excluding other objective functions that were not supported. 

2.1 Many-objective optimization-based automatic query reduction (ManQ): 

ManQ studied a set of IRBL specialized AQR approaches in order to find a high-quality subquery. It 

combines 15 optimization objective functions into one approach to achieve all objectives without neglecting 

any of them, which could negatively affect the outcome. It applies preprocessing to the bug report (stop word 

removal and splitting of dotted terms and camel case terms); then a set of terms is produced from the initial 

query and encoded as binary genes [15]. As shown in Figure 2, ManQ goes through the following steps: 

2.1.1 First step: calculating the Objective functions 

It consists of 15 objectives that aim to improve query quality by combining the individual objectives 

of some studies. The objective functions are divided into four groups, as shown in Figure 2. The first group is 

QQP, which is a set of pre-retrieval query properties measures that are used in IR to evaluate query performance 

and are computed before executing the query [16, 20]. These QQP are specificity, coherency, similarity, and 

term-relatedness. They form eight objective functions (𝑓1(𝑄) − 𝑓8(𝑄)). The second group maintains important 

keywords. It is a set of measures that include 1. determining whether the terms of a query are in the sentence 

describing Observed and Expected Behaviour (OEB), 2. determining whether the query contains the four 

keywords (words in the first, second, penultimate, or last position) of the bug report summary and the name of 

the source file; and 3. determining whether terms in the query are grammatically significant based on part-of-

speech priority (POS).  This group formed four objective functions (f_9 (Q)- f_12 (Q)). The third group is 

maintaining initial information, which is a set of measures that preserve the context of the sentences in the bug 

report based on the occurrence of the term using the PMI scale and compute the cosine similarity between 

subquery Q and the original query. This group formed two objective functions (f_13 (Q)and f_14 (Q)). The 

fourth group is minimize the query length by compare the results length of a sub query with the initial query 
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to evaluate how short the sub query is. It forms one objective functionf_15 (Q). All objective functions are 

illustrated in Figure 2. 

 
Figure. 2 An illustrated figure of ManQ Approach 

2.1.2 The second step: NSGA-III and final query selection: 

 In this step, after NSGA III is implemented, multiple solutions are resulted where ManQ chooses a 

final query through the union of selective queries from each function according to next equation: 

 

Q =  EuclideanDistance( Q ∗, f )  ∪  RankSum( Q ∗, f ) ,  (1) 

where       𝑓𝑖  = {
𝑓𝑖 =  

1

⃒𝑄⃒⃒
. 𝑓𝑖                     ,   𝑖𝑓 𝑖<7

𝑓𝑖 = 𝑓𝑖                 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
   (2) 

EuclideanDistance(Q ∗, f) = argmaxQ√∑ fi(Q)2
fi∈f                   (3) 

RankSum(Q ∗, f) = argminQ ∑ rank(fi(Q)fi∈f     (4) 

 

2.1.3 The third step: Bug Localization: 

After obtaining the optimal query, the next step is to submit the query to a popular search engine for 

documents called Lucene in order to find the buggy files in the source code [5, 15, 16, 18]. 

2.2 Proposed Work: R-ManQ 

As mentioned in the Rahman, et al. [11] study, it concluded there are several attributes that make high-

quality queries, and the performance of IRBL approaches is highly efficient. They are: keywords of that query 

are less frequent within a bug report, are less ambiguous (i.e., have less entropy), are more likely to be found 

in the description section of a bug report, are more likely to be nouns, and the optimal candidates are likely to 

be a small number of important keywords. Therefore, R-ManQ aimed to reduce the objective functions that 

make up the ManQ by adopting the objective functions supported by Rahman's study [11] and dispensing with 

the rest of the other objectives. Therefore, these attributes were represented in seven objective functions and 

were kept within the ManQ approach while dispensing with the rest of the other objective functions, and they 

are: 

 𝑓4(𝑄)and 𝑓5(𝑄)to fulfill the keywords of the optimal query are less frequent within a bug report.  

𝑓6(𝑄)to fulfill the keywords of the optimal query are less ambiguous (i.e., have less entropy). 

𝑓9(𝑄) and 𝑓10(𝑄)to fulfill the keywords of the optimal query are more likely to be found in the description 

section of a bug report. 

𝑓12(𝑄)to fulfill the keywords of the optimal query are more likely to be nouns. 

𝑓15(𝑄)to fulfill the optimal candidates are likely to be a small number of important keywords. 
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As shown in Figure 3, the blue rectangles are represented the remaining objective functions in ManQ, 

only seven objective functions, whereas the rest objective functions are have been removed from the original 

ManQ and therefore create R-ManQ. 

ƒ15 (Q)

 Calculating 7  15 Objective Functions

Maintaining Initial 

Information

Maintaining Important 

Keywords
Minimize 

The Query 

Length

Maintaining Pre- Retrieval Query Quality Properties (QQP)

ƒ9 (Q) ƒ10 (Q) ƒ11 (Q) ƒ12 (Q) ƒ13 (Q) ƒ14 (Q)

NSGA-III 

High Quality Query

Bug 

Report

ƒ1 (Q) ƒ2 (Q) ƒ3 (Q) ƒ4 (Q) ƒ5 (Q) ƒ6 (Q) ƒ7 (Q) ƒ8 (Q)

Bug 

Localization

Remaining Objective 

Functions
Removed Objective 

Functions

 
Figure. 3 proposed work R-ManQ 

3. RESULTS AND DISCUSSION  

This section discusses the evaluation metrics, used data set, and the obtained results from the proposed 

work and compares them with the base work ManQ, as well as the previous studies identified in [15] , which 

are,   BLIZZARD, STRICT, and an initial query (INIT). 

3.1. Evaluation Metrics:  

The proposed work, R-ManQ, has been evaluated by a set of evaluation metrics in order to validate its 

effectiveness and efficiency. They are: 

3.1.1 Performance Evaluation Metrics:  
To evaluate the effectiveness of the proposed work, performance measures are to be used, which are used in 

most of the related work to evaluate the performance of IRBL. These metrics are the Top-N (N = 1, 5, 10), 

mean average precision at 10 ranks (MAP@10), and mean reciprocal rank at 10 ranks (MRR@10). 

TOP N Rank: It returns the percentage of queries that contains at least one relevant file (buggy files) in the 

first N files of the resulted list. The values of N (1,5,10) will be used in this work [3, 5, 6, 12, 14, 15, 18, 24]. 

Mean Average Precision@10 (MAP@10) calculates the mean of the average precision of all queries, whereas 

Precision @ 10 calculates the precision when each related result occurs in the sorted list (in 10 ranks) [3, 5, 6, 

12, 13, 15, 18, 24]. 

MAP@10 =
∑ 𝐴𝑃𝑖

10
𝑖=1

𝑁
 , where AP@K = ∑

Pk×buggy(k)

⃒S⃒

D
k=1      (5) 

Mean Reciprocal Rank@10 (MRR@10) is the mean of the reciprocal of the position of the first buggy file 

within the top-10 results. The reciprocal rank for a query is the inverse rank of the first relevant document 

found. This metric evaluates how quickly the developer finds the first buggy files [3, 5, 6, 12, 13, 15, 18, 24]. 

 MRR@10 =
1

⃒Q⃒
∑

1

rank(q)q∈Q       (6) 

3.1.2 Execution Time: 

It means how long the approach took to finish its work and produce its results. it calculates the total 

number of the number of system clock seconds that it took. 

3.1.3 Query performance changed (|Qc|): 

It computed the number of queries whose performance changed (|Qc|), improved (|𝑄+|) and worsened 

(|𝑄−|) according to the highest rank of the buggy files [11, 15]. 

3.1.4 The average length of the queries (|𝑄|): 

It computed the average length of the queries (|𝑄|) according to the number of terms in the final query 

of the approach [15]. 

3.2. Data set:   

The used data set is the ManQ data set itself, which consists of 1546 poor queries from six open-

source Java-based subject systems from two popular bug tracking systems—BugZilla and JIRA. Poor queries 

do not include stack traces or program entity queries [15]. 
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3.3. Experiment  

3.3.1 Experimental settings 

This study used the Eclipse IDE tool to create R-ManQ, which was written in pure Java, and also used 

it to obtain the results. It was implemented in an AMD Ryzen 5 processor with 2.10 GHz and a RAM of 8.00 

GB.  

3.3.2 Experimental results and discussion 

R-ManQ has reduced the objective functions that make up ManQ by adopting the objective functions 

supported by the empirical study [11] and dispensing with the rest of the other objectives. This section discusses 

the results obtained from the proposed work compared with the original ManQ, INIT, STRICT, and 

BLIZZARD. Table 1 shows the results of this comparison. 

 

Tabel 1 R-ManQ, ManQ, STRICT, INIT, BLIZZARD results 
Evaluation Metrics R-ManQ ManQ STRICT INIT BLIZZARD 

TOP-1 28.57% 25.71% 22.86% 25.71% 27.62% 

TOP-5 42.86% 45.71% 42.86% 42.86% 45.71% 

TOP-10 53.33% 56.19% 55.24% 52.38% 58.10% 

MAP@10 34 % 33.25% 30.69% 32.05% 34.09% 

MRR@10 36% 35.02% 31.42 % 33.49% 35% 

|Q+| 33% 33% 33% ___ 31.42% 

|Q-| 20% 18% 30% ___ 26% 

|Qc| 53% 51% 63% ___ 57.42% 

|Q| 20 24 14 29 42 

Time Execution  15 38 ___ ___ ___ 

 

According to the obtained results, the proposed work, R-ManQ, outperformed the original ManQ in 

all performance evaluation metrics except for TOP-5 and TOP-10. In addition, R-ManQ outperformed INIT 

in all performance evaluation metrics and STRICT, except in the TOP-10. Further, R-ManQ outperformed 

BLIZZARD in all performance evaluation metrics, except in TOP-1 and 10. 

 R-ManQ achieved 28.57% in TOP-1, higher than 25.71% in ManQ, 22.86% in STRICT, 25.71% in 

INIT, and 27.62% in BLIZZARD. Furthermore, R-ManQ achieved 42.86% in TOP-5, the same as in 

STRICT and INIT. R-ManQ achieved 53.33% in the TOP-10, higher than 52.38% in the INIT. However, in 

the TOP-5, R-ManQ obtained less value than 45.71% in ManQ and 45.71% in BLIZZARD. In addition, R-

ManQ obtained (53.33% <56.19%) less than ManQ in the TOP-10, as well as less than 55.24% in STRICT 

and 58.10% in BLIZZARD. All those comparisons are illustrated in Figure 4. 

 

 
Figure. 4 The performance metrics of R-ManQ, ManQ, STRICT, INIT, BLIZZARD 

However, the |𝑄+| overall queries of R-ManQ was the same as it was in ManQ and STRICT (33%), 

and was higher than BLIZZARD (31.42%). As shown in Table 1, the proposed work obtained better results 

(20%) in |Q-| than (30%) in STRICT and (26%) in BLIZZARD, while it was lower compared to ManQ  (20% 

> 18%). Figure 5 illustrated |Qc| metrics values. 

According to the number of terms, |Q|, R-ManQ decreased it to 20 compared to ManQ, INIT, and 

BLIZZARD (24, 29, and 42, respectively), while it was 14 in STRICT. Regarding time execution, ManQ took 

too long time more than the proposed work (38 > 15). Figure 6 illustrates the |Q| and execution time metrics of 

the proposed work compared to ManQ. 
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Figure. 5 |Qc| metrics R-ManQ, ManQ, STRICT, BLIZZARD 

Despite reducing the number of objective functions that make up ManQ approach, the obtained results 

of R-ManQ were not low compared to the original ManQ, On the contrary, the proposed work has produced 

better results than ManQ in the three performance evaluation metrics (TOP-1, MAR@10, and MRR@10) with 

much less execution time than ManQ. The reason for this reduction in time is that the required processing time 

is reduced due to reducing the number of objective functions. However, the effect of reducing these objective 

functions appeared in the values of the TOP-5 and TOP-10, where their values were lower than in ManQ, 

which indicates that the objective functions that were excluded had an impact on the results obtained by the 

ManQ approach. 

Figure. 6 Execution Time and |Q| metrics R-ManQ, ManQ, STRICT, INIT, BLIZZARD 

4. CONCLUSION  

Although many IRBL approaches were provided in order to make the bug localization process faster 

and with less effort, their performance is still not efficient. ManQ is one IRBL approach that improves the 

performance of IRBL by enhancing the quality of queries through a multi-objective optimization approach. 

Although ManQ consists of fifteen objective functions, [11] study claimed there are several attributes that make 

high-quality queries and the performance of IRBL approaches highly efficient. Therefore, R-ManQ has been 

proposed. It was evident that a similar performance could be achieved by R-ManQ as ManQ with a much lower 

execution time, a much lower number of objective functions (only seven objective functions), and a smaller 

number of terms in the query, where it obtained high results on TOP-1, MAP@10, and MRR@10 while failing 

on TOP-5 and TOP-10. Therefore, in the future, new objective functions related to graph-based term weighting 

algorithms will be added within the components of the proposed work R-ManQ as a step toward improving its 

performance. It was concluded that the attributes identified in [11] are the most important attributes that make 

the query high quality, which leads to an improvement in the process of locating the buggy files that contain 

the IRBL. 
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